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Abstract: Many efforts to predict the impact of COVID-19 on hospitalization, intensive 
care unit (ICU) utilization, and mortality rely on age and comorbidities. These predictions 
are foundational to learning, policymaking, and planning for the pandemic, and therefore 
understanding the relationship between age, comorbidities, and health outcomes is critical to 
assessing and managing public health risks. From a US government database of 1.4 million 
patient records collected in May 2020, we extracted the relationships between age and 
number of comorbidities at the individual level to predict the likelihood of hospitalization, 
admission to intensive care, and death. We then applied the relationships to each US state and 
a selection of different countries in order to see whether they predicted observed outcome 
rates. We found that age and comorbidity data within these geographical regions do not 
explain much of the international or within-country variation in hospitalization, ICU admis
sion, or death. Identifying alternative explanations for the limited predictive power of 
comorbidities and age at the population level should be considered for future research. 
Keywords: comorbidity, health outcomes, COVID-19, mortality rates

Introduction
As of January 2021, the novel coronavirus (COVID-19) retains considerable uncer
tainty in its pathology despite emerging over a year ago. As the disease envelops the 
globe and news strains develop, it continues to pose a unique challenge for risk 
analysts, public health professionals, and policy makers. After its initial outbreak in 
Wuhan, China, medical and public health analysts identified risk factors for more 
severe presentation of COVID-19 (eg, hospitalization, admission to an intensive care 
unit, and fatality).1 Among these risk factors are underlying health conditions, age, 
race/ethnicity, and socioeconomic and behavioral factors.1 Such indicators are both 
intuitive and evidence-based, and can frame both short-term and long-term needs 
related to treatment,2 risk-based responses and policy making.3

However, such clinical guidance does not necessarily answer a fundamental 
question remaining for pandemic response: given an outbreak of a certain time
frame and magnitude, what is the range of population-level outcomes that countries 
should anticipate given the underlying health conditions of its population? After all, 
if analysts cannot answer basic risk analysis questions like “what can go wrong”, 
“how likely is it”, and “what are the consequences”, the efficacy of planning and 
response activities will be greatly diminished.4,5 An intuitive response to such 
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a question is to analyze the prevalence of underlying 
health conditions within a population, also referred to as 
comorbidities, against existing COVID-19 epidemiologi
cal trends and health outcomes. By tracking noted comor
bidities (eg, heart disease, lung disease, diabetes, cancer, 
etc.), population pyramids, and a growing set of COVID- 
19 hospitalization and fatality data, it seems likely that 
various statistical exercises should be able to roughly 
confirm comorbidities and age as the core determining 
factor behind the more severe health outcomes of 
COVID-19.

We test this intuition in two stages. First, we use a large 
data set of 1.4 million diagnosed COVID-19 cases 
(described below) to identify relationships between age, 
number of relevant comorbidities, and the likelihood of 
hospitalization, ICU admission, placement on a ventilator, 
and death. If comorbidities and age profile explain 
COVID-19 outcomes on the population level, then the 
relationships identified in a database of this size should 
provide a guide to population-level outcomes. In 
our second step, we use the relationships found in the 
data to predict hospitalization, ICU admission, and death 
for US states and a selection of countries. We find that 
comorbidities and age structure data for COVID-19 
patients do not predict observed population-scale out
comes. We conclude that something more than a simple 
count of comorbidities and age structure is needed to 
predict what COVID-19 will do to populations and health 
systems.

COVID-19 and Underlying Health 
Conditions
Early reports from China, Iran, and Italy note that risk 
factors for severe incidence and increased fatality of the 
disease include those aged ≥65 years—particularly among 
those ≥85 years—and individuals with at least one 
comorbidity,6–9 ie, the occurrence of one or more “medical 
conditions additional to an index disease”10 which may 
increase medical complications in inpatient management 
needs.

Many potential comorbidities have been identified by 
epidemiological studies around the world as exacerbating 
the symptoms and adverse health outcomes associated 
with a COVID-19 infection.11 A meta-analysis of seven 
studies in China noted that severe disease and increased 
mortality were associated most prominently with hyperten
sion, diabetes and cardiovascular disease.12 Other studies 

have found increased risk due to smoking and obesity.6,7 

The US CDC notes higher risks for severe illness and 
fatality associated with various factors including: chronic 
lung disease (inclusive of asthma, chronic obstructive pul
monary disease [COPD], and emphysema); diabetes mel
litus; cardiovascular disease; chronic renal disease; chronic 
liver disease; immunocompromised condition; neurologic 
disorder, neurodevelopmental, or intellectual disability; 
pregnancy; current smoking status; former smoking status; 
or other chronic disease.13,14

While the relationship between comorbidities and 
COVID-19 health outcomes has been independently 
explored for several cities and countries, there is currently 
limited research that comparatively evaluates the relation
ship between comorbidities and COVID-19 outcomes 
internationally. Using historical hospital data, Ioannidis 
et al15 assessed population-level COVID-19 mortality 
risks for elderly versus non-elderly individuals without 
comorbidities in France, Italy, Netherlands, Sweden, and 
the United States (specifically in the State of Georgia and 
New York City). They found that, as April 24, 2020, the 
proportion of these COVID-19 fatalities for individuals 
who were <65 years old without comorbidities ranged 
from 0.6% to 2.6% of all COVID-19 deaths. Overall, 
Ioannidis et al found that the risk of death is 14 to 84 
times lower in non-elderly people aged <65 years old, and 
that the age-dependent risk gradient is modestly sharper in 
European countries and Canada versus most of the US 
locations.15 Though Ioannidis et al provide insights that 
could be used to develop strategies that focus on protect
ing high-risk elderly individuals during the pandemic, their 
international comparative work purposefully excludes 
individuals with comorbidities due to there being “ … 
different definitions of eligible comorbidities and data 
collection methods”.15

Comorbidities tend to be more prevalent in older popu
lations. Thus, when using an international comparative 
approach, the distribution of comorbidities across each 
country’s unique population distribution by age should be 
considered. Based on Italian COVID-19 mortality data, 
Gjerstad et al found that after controlling for comorbid
ities, age had a minor effect on COVID-19 mortality.8 This 
demonstrates how critical it is to consider comorbidities 
and comorbidity prevalence. Other research has shown 
higher fatality rates in developed countries that have 
longer average lifespans, indicating how comorbidities 
that are more prevalent at older ages may be related to 
increased COVID-19 severity. Vanella et al found that case 
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fatality risk differed based on age structures of known 
COVID-19 cases and on the number of intensive care 
beds available and occupied in these countries.16

Sornette et al assessed COVID-19 mortality data across 
over 50 countries, classified into four groups: (i) Western 
countries, (ii) East Block and developed South East Asian 
countries, (iii) Northern Hemisphere developing countries, 
and (iv) Southern Hemisphere countries.17 They analyzed 
the number of deaths per million across the countries, 
revealing that Western countries exhibited higher mortality 
rates. They assessed the relationship between deaths 
per million and life expectancy, finding a positive relation
ship between life expectancy of a country and its COVID- 
19 mortality rate. Though Sornette et al did not focus on 
comorbidities within their formal analysis, they note that 
heart disease and respiratory disorders were common 
across fatal COVID-19 cases across countries. For those 
who were younger than 65 years old, those who were 
clinically obese were most at risk.17

To date, literature in this area is limited to epidemio
logical review of COVID-19 patients and outcomes. Such 
retrospective reviews prove vital for assessing the relative 
risk ratios of different comorbidities to provide historical 
explanation and description, but they cannot provide 
anticipatory insights given distinct health disparities and 
comorbidity prevalence across regions and countries. Our 
assessment provides robust comparison and prediction of 
severe cases and anticipated fatality rates associated with 
COVID-19. Rather than review documented COVID-19 
caseloads, we utilize historical COVID-19 comorbidity 
fatality rates along with population health comorbidity 
survey data to build predictive models that demonstrate 
the anticipated burden of disease across regions and 
countries.

Methods
COVID-19 health outcomes were collected from the HHS 
Protect Government Data Hub database from the Centers 
for Disease Control and Prevention on May 27, 2020, and 
all subsequent analyses were performed using version 
4.0.2 of the R programming language (R Project for 
Statistical Computing; R Foundation). The database 
reports on confirmed COVID-19 infected individuals, 
their underlying health conditions, and resulting hospitali
zation and mortality outcomes of infected individuals. All 
data was anonymized and did not contain identifying 
patient information. The data were gathered through sur
veying 1.4M individual confirmed cases and the 

characteristics of each infected person across various par
ticipating municipalities throughout the United States. 
There is roughly an even split of genders among the 
confirmed cases, with 51% of them as female. While the 
majority of US states are represented in the data, most 
cases (30%) are from New York, and the second largest 
representation of cases (11%) are from New Jersey.

To measure how COVID-19 is affecting various age- 
comorbidity groups in the United States, we categorized 
confirmed cases according to the individual’s age group 
and number of comorbidities. Age groups were defined as 
0–17, 18–29, 30–39, 40–49, 50.59, 60–69, 70–79, 80+ 
years, and the comorbidities considered include diabetes, 
cardiovascular disease, chronic lung disease, and renal 
disease. These comorbidities were chosen based on expert 
opinion about their relevance to COVID-related health 
outcomes and their availability in both the HHS Palantir 
and Behavioral Risk Factor Surveillance System (BRFSS) 
datasets, the latter applied later in the analysis. Cases were 
categorized as having 0, 1, or 2+ of these comorbidities 
and by age group. Many of the records were missing 
critical information, in particular information related to 
specific health outcomes and the presence of 
a comorbidity. Due to the nature of how the surveys 
were conducted, we assumed that blank comorbidity or 
health outcome responses were negative, meaning the 
individual did not have that specific comorbidity or health 
outcome.

The data allowed us to measure the change in health 
outcomes based on an individual’s age and number of 
comorbidities. Hospitalization, intensive care, mechanical 
ventilation, and death rates were calculated by age and 
comorbidity groupings, as shown in Table 1. The percen
tages in Table 1 can then be used to help predict the 
outcomes of COVID-19 among the infected based on 
population characteristics, ie, quantifying how much 
worse the hospitalization and mortality rates would be in 
an older population or one with more comorbidities.

To create age-specific comorbidity prevalence rates for 
the United States, we used data from the US Census 
Bureau and the Centers for Disease Control and 
Prevention (CDC) BRFSS.18 First, state population data 
came from the US Census Bureau’s National Center for 
Health Statistics bridged-race population estimates of the 
July 1st resident population, specifically the bridged-race 
Vintage 2018 (2010–2018) postcensal population 
estimates.19 These estimates were produced by the US 

Risk Management and Healthcare Policy 2021:14                                                                              https://doi.org/10.2147/RMHP.S313312                                                                                                                                                                                                                       

DovePress                                                                                                                       
2879

Dovepress                                                                                                                                                           Cegan et al

https://www.dovepress.com
https://www.dovepress.com


Census Bureau in collaboration with the National Center 
for Health Statistics (NCHS).

Finally, we predict death rates across states in the 
United States (using the Palantir HHS COVID-19 health 
outcomes) as well as select international countries by 
applying age- and comorbidity-specific death rates from 
Table 1 to the population profiles in a given state or 
country, respectively. Our international comparison was 
enabled by two sources. First, we used established popula
tion-level comorbidity prevalence data within 28 
countries.20 Their investigation was based from the 
World Health Organization World Health Survey Data 
Archive collected through cross-sectional national survey 
reports conducted between 2002 and 2004. Therefore, we 
only included countries and comorbidities analyzed in this 
study. We then updated population age parameters to cur
rent data for each of the 28 countries using the 2020 
Central Intelligence Agency World Factbook which prior
itizes updating world population data as collected from the 
Bureau of the Census as well as the United Nations 
Population Division.21 Together, these datasets facilitate 
contemporary international comparisons that provide 

empirical estimates of chronic disease and multimorbidity 
prevalence across the lifespan for all 28 countries.

Results
The results of the analysis are shown in Figure 1: Panel 
A for the US states, and in Figure 1: Panel B for several 
nations. Panels A and B show what happens when the 
likelihoods presented in Table 1 are applied to populations 
with different levels of comorbidity and demographic pro
files, ceteris paribus. In Figure 1: Panel A, it can be seen 
that the rates of hospitalization, admittance to the ICU, 
placement on a ventilator, and death for infected people 
would be highest in West Virginia, which is has the highest 
rate of cardiovascular disease in the United States,22 

whereas they are the lowest in Utah, one of the youngest 
and healthiest states in the nation.23 In Figure 1: Panel B, 
data for European nations tend to show higher rates of 
hospitalization, etc., while Asian and African nations show 
below-average rates.

To understand the effectiveness of this model we 
then compared predicted death rates with documented 
death rates, calculated as the number of deaths divided 

Table 1 Age-Comorbidity Group Rates for COVID-19 Health Outcomes According to the Dataset

Age Group Comorbidities Hospital Rate ICU Rate Vent. Rate Death Rate

0–17 Years 0 2.37% 0.40% 0.10% 0.04%
0–17 Years 1 13.24% 3.38% 0.97% 0.39%

0–17 Years 2+ 48.78% 19.51% 13.41% 7.32%

18–29 Years 0 2.42% 0.36% 0.09% 0.10%
18–29 Years 1 12.03% 2.22% 1.21% 1.12%

18–29 Years 2+ 48.78% 14.63% 9.15% 7.11%

30–39 Years 0 4.07% 0.67% 0.19% 0.26%
30–39 Years 1 20.08% 4.02% 2.34% 2.23%

30–39 Years 2+ 45.14% 13.52% 8.52% 9.65%
40–49 Years 0 6.07% 1.16% 0.41% 0.61%

40–49 Years 1 24.65% 5.09% 3.26% 3.51%

40–49 Years 2+ 49.57% 13.88% 9.60% 11.80%
50–59 Years 0 8.54% 1.77% 0.67% 1.47%

50–59 Years 1 28.86% 6.37% 4.37% 5.78%

50–59 Years 2+ 55.69% 16.33% 12.00% 16.47%
60–69 Years 0 13.45% 2.75% 1.14% 4.07%

60–69 Years 1 39.62% 8.99% 6.40% 12.71%

60–69 Years 2+ 66.92% 19.48% 14.52% 26.26%
70–79 Years 0 21.28% 3.94% 1.60% 11.14%

70–79 Years 1 55.29% 11.32% 7.88% 27.76%

70–79 Years 2+ 74.65% 19.68% 14.45% 39.19%
80+ Years 0 20.88% 2.61% 0.85% 21.12%

80+ Years 1 55.48% 7.13% 4.54% 48.84%

80+ Years 2+ 69.79% 12.14% 7.89% 52.74%

Source: HHS Protect Government Data Hub; Authors’ own.
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by the number of cases based on data24 as of June 12, 
2020 (see Figure 2: Panel A and Panel B). For the US 
states, we can see that the predicted death rates based on 
age and comorbidities are higher than actual death rates, 
sometimes by several percentage points. The Pearson 
correlation coefficient for US states is −0.015. For the 
international comparison, there is also a slight systema
tic over-prediction, with a Pearson correlation coeffi
cient of 0.515.

Discussion
While our initial results imply that the age distribution of 
a population and the prevalence of comorbidities can 
explain some of the differences in health outcomes, addi
tional confounding factors remain. During initial pandemic 
response, many governments chose to solely focus on age 
and comorbidities to predict spread of the virus. But, we 
argue that a simple count of comorbidities and age struc
ture appears to be insufficient to capture the full scope of 

Figure 1 COVID-19 health outcomes in US states (Panel (A) and across a subset of nations (Panel (B) relative to national averages.
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population dynamics needed to predict outcomes for com
munities and health systems. For future pandemics or 
other health disasters, variables outside of age and comor
bidities (eg, social determinants of health, health system 
capacity, inequities and vulnerable communities) should 
thus be seriously considered.

The distribution of comorbidities varies widely across 
regions and between countries, potentially reflecting socio- 
political factors, health equity issues, and environmental 
threats.25–32 These factors can skew the effect of specific 
comorbidities on death rates.33–36 Future risk analysis stu
dies will need to consider such upstream social determi
nants of health, as well as the unique health care systems, 
policies, and institutions in place in specific countries. 
Banik et al assessed factors that determined COVID-19 
fatality rates across 29 developing and developed econo
mies, while considering public health infrastructure, vacci
nation policies, demographics, and policy intervention.37 

They found that the public health system in combination 
with population age distribution were powerful factors in 
determining fatality rates. Additionally, other unpredictable 
factors may influence disease outcome: researchers are 
exploring whether the number of infectious viral particles 
to which people are exposed at the point of infection (the 
“inoculum”) affects COVID-19 infection severity,38 as has 
been shown in Syrian hamsters39 and ferrets.40 Other inde
pendent variables could include population density, family 
size, and employment.41–46 Additionally, there are social 
determinants that have been demonstrated to raise risk 
tolerance in hurricane contexts: individualistic 

behavior,47,48 and a lack of trust in authorities (government, 
scientists)49–51 including to the point of believing oneself 
capable of gathering sufficient information to know better 
than official evacuation recommendations.52,53

In aggregate, the number of independent variables in 
predicting disease outcome may prevent reliable relation
ships from emerging from large-scale data specific to 
comorbidities. While comorbidities and age are two 
important variables that can answer “what can go wrong” 
during a pandemic, they do not necessarily answer “how 
likely is it” or “what are the consequences” without the 
addition of other variables such as socio-economic factors, 
policies, healthcare capacity, and other determinants of 
health. Future risk analyses used in predicting pandemic 
response will require taking a complex systems perspec
tive to increase the efficacy of planning and response 
activities.54,55

Conclusion
We find that data relating to comorbidities and age struc
ture for COVID-19 patients do not predict observed popu
lation-scale outcomes. The variation in prevalence of 
multiple comorbidities within distinct populations may be 
a prominent factor as to why some regions and countries 
have distinct health outcomes from others during the pan
demic. Studies have demonstrated increased risks exist for 
patients with substance abuse disorders,56 HIV and tuber
culosis infections,57 mental health disorders,58 and specific 
genetics,59,60 among other comorbidities, but not how they 
interact with each other or other factors. Nor did we find 

Figure 2 Comparison of localized death rates based on age and comorbidities compared to the average death rates for US states (Panel (A) and for selected countries 
(Panel (B).
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studies examining whether individuals with comorbidities 
display more compensatory protective behaviors. The 
combined effects of individuals’ comorbidities, behaviors, 
and resources cannot be captured with data related to 
comorbidities alone.

Finally, our study has limitations. Several data con
straints may have limited the analysis. In the first step, 
there is a risk of sample bias in the HHS Protect dataset, as 
well as potential bias from our decision to count missing 
data as negative. The structure of questions could have 
encouraged respondents (in high-pressure contexts) to only 
answer if the answer was affirmative. In the second step, 
there are possible limitations in available data (eg, mea
surement or instrumentation error regarding the consis
tency and thoroughness of COVID-19 testing and 
documentation). What we find to be a lack of relationship 
between the rates in Table 1 and the country or state 
outcomes could in theory be due to data problems on 
either side. Last, we were unable to calculate comorbidity 
rates by age cross-nationally using current data. Such data 
were difficult to access and were not easily comparable. 
Therefore, we used existing, comparable, but old data 
from 2004, potentially leading to an undercount of comor
bidities in our international comparison.

Our study has strengths. In June 2020, we were the first to 
analyze a nascent, national health surveillance dataset. We 
have found that while intuitively important, and clinically 
very relevant, analysis of comorbidities in the population 
using one of the largest datasets available early in the pan
demic does not lead to population-level predictions that are 
useful for planners. While comorbidities can be helpful in 
estimating risk, they do not constitute a complete picture and 
should be considered in tandem with other risk factors.

We suggest that future research should warrant an 
exploration of issues beyond the incidence of comorbid
ities and age profiles which will better prepare cities, 
states, and countries to understand their true exposure to 
COVID-19 health outcomes as additional waves of infec
tion spread. Ongoing research in the field of risk analysis 
can generate evidence in support of adaptive and science- 
based policy,61–63 and provide guidance for clear and 
effective risk communication to the public.64
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